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PREFACE

This is one of a series of RAND Memoranda on digital computer

simulation. Preceding work on this subject has been described in

G. S. Fishman, Diital- Comtuter Simulation The Allocation of Couputter

Timein Co•np•rng Experimen•t, The RAkW Corporation, RM-5288-1-PR,

October 1967, and P. J. Kiviat, Diitai Cic uter Simulation- Modeling

Concepts, The RAND Corporation, RH-5378-PR, September 1967. The purpose

of this Memorandum is to describe a number of statistical problems that

materialize during computer simulation experiments. The Memorandur,

given references (when they exist) that will assist an experimenter in

resolving these problems.
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SUOARY

This Memorandum describes a number of statistical problems that

arisa ia computer simulaiLon experiments. Failure to resolve these

problems adequately can significantly degrade the value of experimental

results. Raferences are given thaL should assist an experimenter in

handling them.

Thie Mewrandum describes three principal problem areas: verifica-

tLon, validation, and problem analysis. Verification insures that a

simulation model containing a mathematical structure and a data base

behaves as an experimenter intends. The complexity of models often

makes it difficult to determine whether their basic operating assumptions

are satisfied.

Validation tests the agreement between the behavior of a simulation

model and the observed behavior of a real system. This requires emptri-

cal data. If a behavioral equivalence can be established between a sLmu-

latior, model and a real system, we may regard the behavior of the model

and the system as being consistent. Since a •isnulation model is often

exercised with modificatioas that do not Cu, .aly exist in a real sys-

tem, it ts important that a benchmark of con-sstftency be established

whenever possible to provide confidence for extrapolations.

Problem analysis embraces a host of statistical problems relating

to the collection, reduction, and presentation of data generated by

computer simulation. The choice of sampling interval, the use of vari-

ance reduction techniques, and the estimation of reliability are prob-

lems coon to all simulation experiments containing random phenomena.

These and similar problems are considered and references are given to

discussions and solutions.

I m i m mm m m m m i m
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Many system simulation experilenrs are driven by input processes

containing elemnts of rando behavior. In such sLimulations, sustist±-

cal reliability mist be considered if experimental results are to be

interpreted properly. Statistical considerations also enter into the

evaluation of simulation model dasiens. Thts Memora1idu describes

these considerations, identifying how and where they become important

during the planning, performance, and analysis of simulation experiments.

The description can be viewed as tracing the elements of a typical experi-

met from inception through analysis, defining statIstical problems and

relating them to the formal body of s;atistical theory.
The problems described are inherent in all stochastic system aimn-

latLon models. An experimental design's ability to reveal useful in-

sights into a system depends to a great extent on how well these prob-

lems are solved. Failure to deal with them may cause errors in inter-

preting observed associations between system input aud output. One

common error is the underestimation of the reliability of system response

measurements, caused by failure to account for autocorrelatica in system

response time series generated by a simulation model. Another frequent

source of error is the assumption that random numbers generated within

a siulation model are independent, when in fact the method of random

number generation employed induces unwanted correlation.

Our aim is to promote awareness of problemts not to solve them.

The study offers no general solutions, but provides references germane

to the statistical problems described. Some references describe parti-

cular solutions; others offer methods of analysis.

To understand the role of statistics in system siamlation experi-

ments, a knowledge of how these experiments developed is helpful.

System simulatton may be regarded as an extension of Monte Carlo methods.

These methods, which concarn experiment* with random numbers, began thel.r

systematic development during World War It when they were applied to

problems related to the atomic bomb. The work involved di-ect simula-

tion of probabilistic problems concerned with random neutron diffusion
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in fissionable material [Ili. Shortly thereafter, it was propofed

that Monte Carlo methods be applied to solve certain integral equations,

occurriag in physics, that were not amenable to analytical solution.

Stochastic processes often existed whose parameters satisfied these

equations. One could estimate these parameters (and hence the solution

to the equations) by performing Monte Carlo experiments on the stochas-

tic Processes.

The reliability of parameter estimates was the dominant statisti-

cal problem in these Monte Carlo experimeAts. Since the estimates

were generally the sum of independent, identically distributed random

variables, their reliability was inversely proportional to n1 -- a 10-

percent improvement in reliability required a 100-fold increase in

cample size. For many problems, random sampling was prohibitively

expensive even with digital computers. The crucial statistical prob-

lem was finding ways of reducing the variance of an estimator for a

given sample size. A number of these variance reduction methods are

described in [23]. A particularly useful variance xeduction technique

known as the method of antithetic variates is described in Hammersley

and Handscomb [113.

The concept of system simulation became a reality in the early

1950's, when there was a shift in emphasis from looking at parts of a

problem to examining the simultaneous interactions of all parts. This

shift was at least partially due to the fact that system simulation

experiments had become feasible on digital computers, which were under-

going order-of-muwgnitude advances in speed. Simulation made it possible

to carry out fully integrated system analyses which were generally far

too complex to be carried out analytically. This was especially true

for studies of the interactions among parts of a system.

In the past decade, the ability to model complex systems has greatly

improved. Specialized computer simulation languages such as GPSS,

SIMSCRIPT and SIXJLA offer convenient formats for describing system

problems. Along with the improvements, however, have come a number of

statistical problems, few of which have been satisfactorily solved. In

fact, some of them have not even been recognized yet as serious problems.



Verification, validation, and problem analysis are tasks demanding

careful statistical consideration. Verification determi1 ,es whether a
model with a particular mathematical structure and data base actually

behaves as an experimenter assumes it does. Validation tests whether

a simulation model reasonably approximates a real system. Probier
analysis seeks to insure the proper execution of the simulation and

proper handling of its results; consequently it deals with a host of

matters; the concise display of solutions, efficient allocation of

computer time, proper design of tests of comparison, and correct
estimates of sample sizes needed for specified levels of accuracy.

In other words, verification and validation insure that a simula-

tion model is properly designed; only after a model has been verified
and validated can an experimenter Justifiably use a model to probe

system behavior. Problem analysis mainly deals with the results of
experimental probing.

Of the remaining aections of the Memorandum, Sec. II provides

some necessary definitions and motivation, Sees. III and IV discuss

problems associated with the design and proof-testing of a simulation

model, and Sec. V considers problems associated with the use of sjau-

lation models. The formsa of the last three sections is: presentation

of problems, brief discussion of advised solutions, references to

relevant literature.

i
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SEl. .__sxt IoN MODELS

The concepts discussed from hero on can best be understood in the

context of a typical slsulation midel. This section defines a number
oi tems uzed in succeeding sections, exacaines a typical model to show
these terms in their proper context, and indicates some problem areas

connected with mudel structure and data systems that should concern

every model-builder.

Every simulation model comprises two systems -- a data system

and a logical system. Both present a model-builder with problems;

both contribute equally to the validity of a final simulation model.

When we tirst ioot at a simulation model we see its logical

structure--the way in which a system's operations have been analyzed

and factored into discrete units, and these units combined so that the

model can be made to reproduce the system's behavior. When we look

at a model more deeply, we see that it contains sequences of data

comparisons and logical tests. These tests cause a model to take

different actions depending on numerical values that are either input

from the world outside its boundaries or computed within. The model's

behavior is conditioned by these data values, and its results are

sensitive to data representations and methods of data generation.

Consider the simple one-machine shop with a waiting line, shown

in Fig. I. Items arrive at the mochine for processing; the arrow
coming from the left shows the jobs arriving with average arrival rate

x. If the machine is free when a job arrives it immediately begins

service, which is performed at an average service rate i. A job

that arrives when the machine is engaged waits in line until it can

be processed. The waiting line is pictured as a box; in a real

system it might be a tote box or a pile of partially completed parts.

When a job is completed it leaves the service facility (arrow going

to the right), freeing the machine for another job. If jobs are
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waiting in the line (queue), one is selected for service according to

a queue discinline and the machine is engaged agagn. If no jobs are

waiting, the machine ramains idle until the next job arrival.

_ARRIVAL A Waiting DEPARTURE •

Sline

Fig. I -- Simple machine shop model

Systems such as this, in which jobs arrive, possibly wait in

queues, and are serviced are called guueLnU systems. Almost all

simulation models have queueing systems imbedded in them.

Simulating a system like the one described requires the definition

of events that take place during its operation. Events occur at pointr

in time when system activities begin and end; if an activity has no

duration, e.g., a decision made a,- an instant in time, it only has one

related event.

A gross representation of the logical structure of a queueing

system is shown in Fig. 2, The activities pictured are jobs arriving

and jobs being serviced. Jobs arrive at the shop at random times. Let

the first N lobs that arrive be denoted j1, J J14 and their

arrival times be denoted t1 , t 2 ... , t. Then the times between job

arrivals are: d-(t - t) 9 ,d 2 -(t 2 - tQ) dN -tNQ

Inputs to the queueing system are simulated by generating lob arrivals

at the service facility; interarrival times rather than arrival times

are usually used. When a job arrives, the time when the next job will

arrive is computed by random sampling from an Lnterarrival time distri-

bution. Two data problems associated with this simulation are deter-

mining the correct statistical sampling distribution and generating
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random samples from it. Section IV discusses some problems concerned

with selecting a sampling distribution. MeLhods for generating random

samples from various statistical distributions can be found Ln 14]
and [243.

ARRIVAL ACTIVITY SERVICE ACTIVITY

Job
"- • enters queue

bf maa chins Se e Job departs
Is busy

Fig. 2 -- Basic queueing model

A sequence of job arrival times constitutes a sample from a

simulation input Process. Each arrival generates an interarrival

time for the next job and a service time for itself. Figure 3 illus-

trates the arrival event In some detail showing the sequence of simu-

larLon activities, the generation of an interarrival time and a

service time, and placement of a new arrival in process or in queue.

When a job arrives it is placed in service if the server is free;

otherwise, it is placed in queue. Call the service times for the N

Jobs that enter the shop ai, a2, ... , 1N' The sequence of service

times also constitutes a simulation input process, aS random samples

are drawn from some service time distribution whenever a job is pro-

ceased. For each job that passes through the shop, two (random) quan-

tities must be determined -- d and s9. The quantity di determines

The notation used in Fig. 3 is taken from P. J. Kiviat, Digital
Computer Simlation: Modeling Concepts, RM-5178-PR, September 1967.R
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Determine
time of next

earrival

Determine
. service time of

this job

SJPu t NO YES Put
job in Server free * i se v cI ~ queue ? . n evc

! Schedule end

Wa.ritvei

for end of

Fig. 3 -- Arrival event

the time when a job enters the shop, s determines the time it spends

in process. In this model, both of the quantities dL and sa are gen-

erated when a Job enters the shop; in a slightly modified version of

the model the service tLme might not be generated until the job is

actually put into service. Regardless of the time (or place in the

w Jel) vhen these values are generated, they "%elong" to the job and

determine its experience in the system.

I.



All simulation models are driven by some basic force, generally

the arrival of a task, job, or request of some vort in the aimul-ted

system, Each job's progress through the system is determined by two

sets of factors: its characteristics, and pressures exerted by the

system. Job characteristics can be few or many; in our simpie odel

there are two, an arrival time and a service time. These characteris-

tics can be generated at one time or at different stages in a job's

life as it passes through a simulated system. Regardless of where

they are generated, they belong to a job and contribute to its simo-

lated behavior.

A job with n characteristics can be described by a list of these

characteristics which we call an n-tuple. A job in our queueing model

is characterized by a 2-tuple (dL, sa). A typical problem encountered

when constructing a simulation model is the generation of job charac-

teristics; an important problem encountered while checking out a simu-

lation model is the examination of a sequence of generated lob Charng-

teri.ations, as we call these n-tuples.

As Fig. 3 shoews, a job does aot necessarily have to pass directly

through the shop; it can wait in line while other jobs are being pro-

cessed. If T1 denotes the time thae job i leaves the shop, then

w a T - ti - is the time it spends waiting for service. The

sequences T1, T2, ... , TN and vl, w2 , -.. , wN are sLmulation output

processes, sequences of variables whose values are determined by the

activities that take place within the simulation model. If the model

is designed so that curtain jobs have priority over others, then low-

priority jobs will have long waiting times; if it is designed with a

service facility that shuts down periodically for repairs and rest peri-

ods, then the sequence of jobs that exit from the shop will reflect this.

A simulation model is designed to generate output processes that

can be studied to observe a system's behavior as its data and/or

logical structure are changed. Data influence a model through the

selection of statistical sampling distributions, random sampling

procedures, and activity levels. The rate at which jobs arrive and

are serviced, X and p respectively in Fig. I, are activity levels
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that specify the intensity of system operations. Figures 3 and 4

illistrate some Influeiices that Model structure exerts on a simulation

study.

End of
service

job in job from queue

NO--

IU t
job in service

___________Schedule end
of service

event

Fig. 4 -- End of service event

"The operating rules used to select a job from a waiting line

clearly are part of the model structure and influence system behavior.

A tomplex model generally contains many different kinds of operating

rules: decision mechanisms, search and choice procedures, and

scheduling heuristics are some that are found most frequently. We

have chosen a queue discipline to illustrate the effect of an operating

rule in a model. A rule under which jobs that have short processing

times are selected first will produce a sequence of T'a close to one

;¶1.



another fiollowed by sequences with greater values. The character ot

the output process will he different under this rule from the output

under a rule that selects jobs in another way.

A simulation model must therefore be examined in two wtvas.

Its data must be examined, both with respect to the particular repre-

sentations chosen and the way the model selects samples in its simula-

tion process; and its structure mst be exaUined to see that mecinanisms

have been chosen that produce correct system response. Both data and

structure are important, both posa statistical problems itr. analysis

and evaluation. Section III treats in detail the problems outlined in

the above example.

4i
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DATA VERIFICAFTON

Inputg in most simulation experiments ronsist of Jobs of some

sort, each characterized by a sequence of random variables. In the

simple quoeueitg =del each job is characterized by an interarrivat

time and a service time. Each Job affects the system to an extent

determined in part by the values of its corresranding 2-tupla. In

general, simulation experiments measure the response of a system to

different sequences of input n-tuples.

In most system simulation models the elements of job n-tuples

are independent random variables and sequences of n-tuples are inde-

pendent multivariate random variables. The n-tuple elements are

transformations of pseudorandom numbers drawn from a uniform distri-

bution on the unit interval. To each n-tuple characterizing a job,

the-e corresponds an n-tuple of uniformly distributed random variables.

If the model design is proper, the elements of this latter n-tuple

should be independent and uniformly distributed5 and so should be

the sequenceE of these n-vuples.

Absence c, independence in generated samples implies that the

assumptions of the model do not hold. Verifying independence assump-

tions is the first Ptatistical problem arising Li system simulation

experiments. Since the tests of independence in no way relate to

proposed system structure, one may check the pseudorandom number

generator quite separEtely from other considerations.

The most important Uypothesis to test is that the pseudorandom

number generator creates sequences of independent random variables.

Suppose we collect m pseudorandom numbers. If we divide the unit

interval into k class intervals and let xi be the number of observations

in interval i, then for sufficiently large m we may regard the statistic

|I

ii |
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as beiag X distriWted with (k - 1) degrees of freed_.

SMann and Weld [17]. who have studied the problem of choosing k
according to some "test criterion," sugest

2 2 1/5
k 4[2(m- 1c)

where

(21n) e-l
(•'/2 Jf e-X/2 dx a .

c

Cochran [1] describes the seise in which this choice of k is best.

For our purposes, the Mann and Weld criterion seems reasonable, If2 2
I2 exceeds &t , o being the confidence level, we reject the hypo-

thesis. This test or an equivalent one has been performed on most

pseudorandom number generators and, therefore, our mentioning It is

princLpl]iy for completeness.

The X test also applies in testing the independence of n-tuples,

but instead of working with the unit interval we divide the n-dimensional

unit surface into k n-cubes of equal volume and define xz as the number

of n-tuples In the ith n-cube. MacLaren and Marsaglia [16] apply this

test to the output of several pseudorandom number generators for pairs

and trLples. Their results show a number of standard generators to

be suspect.
2

The X test concerns questions of randomness and makes no use of

the way in which a particular method generates random numbers. Coveyou

and MacPherson [5], who offer a unified theory of the statistical

behavior of n-tuples of pseudorandom generators, conclude that currently

there is no better method of generating n-tuples than the simple multi-

plicative congruence method, ri+, a rfU(rmod 2 P), with a carefully



chosen multiplier, U. They describe how to choose the multiplier, and

discuss the effects of computer word length on generated sequences.

A departure frora the independence assumptioa can significantly

affect experimental results. The following example illustrates this

point. Let x and y he pseudorandom nu-nbers that are suLtably trans-

formed; g(x) is used as an interarrival ti sad• n(y) as a servLce

twe . Figure 5 shows the square over which the pair x, y are uniformly

distributed.

Y

1.01.. ..

II V

A. P. P4

0 .5 1.0

Fig. 5

Let p. be the probability of x, y being in the ± square. If

pairs are independent, then

1i " /4 i, , ,. . 4.
PL

Suppose, however, that p1 is greater than p2. p3 and p4 " 11 inter-

arrival and service times are increasing functions of x and y,

respectively, then we would expect short interarrival times and long

service times to occur together more often than theory suggests. This

would cause an upward bias in the waiting times and queue lengths

observed in the simulation model.

Sim m m m.
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In more complex models, the absence of independence atng n-tuples

is mole difficult to aseess. Verifying that a data source satisfies

the independence assumption will always be of value, hcwever, if an

incorrect interpretation of results is to be avoided. References L[5
andA [163 offer helpful information to an experimenter in choosing a

pseudorandom generator.

ln some simulation experiments, correlated sampling ts necessary,

Suppose we are simulating the demand for aircraft tires; then tire wear-

out is clearly related to the number of aircrafit landings. Simulations

of economic behavior often conitain autocorrelaced input processes, e.g.

autonomous investment. References [7] and 121] describe methods for

gexsrating correlated samples and [19J describes procedures for sampling

from two kinds of autocorrelated processes.

Tocher £24] has pointed out that correlated sampling is often dif-

ficult to perform because of the onerous and often impossible task of

collecting sufficient information to describe desired distributions.

Verification and validation should clearly be applied to correlated

sampling. The peculiar circumstances surrounding different kinds of

correlated sampling make it difficult to suggest a generally applicable

method. Since all sampling ultimately depends on sequences of indepen-

dent uniformly distributed random numbers, the least that can be done

is to test the hypothesis that successive numbers and sequences of
numbers are independent.

STRUCT1RE VERIFICATION

Verifying the structure of simulation models means examining sub-

structure outputs and determining whether they behave acceptably. One

value of this exercise is that it identifies unwanted system behavior.

Very minor simplifying assumptions can generate output processes whose
behavior differ* considerably from what is desired. Structure verifica-
tion is also valuable for determining whether one may substitute an

analytical or simple simulation substructure for a complex one. This

may be done if a behavioral equivalence can be established between the

simple and complex structures. The advantages of substitution accrue

from the better understanding of the analytic or simple simulation struc-

ture and froa savings in computation time during simulation.



To make behavloral comparisons, we require a probability model.

The amdel must be sufficiently general to include the variety of

phenomena encountered in simulation models, yet it must be restrictive

enough to permit reasonably straightforward hypothesis testing. System

simulations uually are concerned with series of Interrelated events

and an appropriate probability model must explicitly recognize

interrelationships between past, present and future events. Since

Lhese associations are cime-dependent, we refer to them as intertemporal

dependence.

In Ref. [103, the writers suggest the class of covariance station-

ary stochastic processes as a convenient model for studying simulation-

generated time series. The reasons for this choice are the valuable

conceptual insights that these processes afford as well as the ease

with which certain of their sample statistics (principally the spectrum)

can be used in hypothesis testing. We first formally define a covari-

ante stationary process and then discuss the meaning of some of its

population parameters.

Let X be a random variable generated by a simulation model and

recorded at time t. If [X ; t -0, + 1, + 2, ... , -+ is a stochastic

process such that E(X XC+) is finite and independent of t for all 1,

then IX.) is covariance stationary. If the rand= variables Xt and

XK+T are not independent for sone -T $ 0, then fX t is autocorretated

or linearly dependent. atput processes generally satisfy the covari-

ance stationary assumptions and exhibit intertemporal dependence. The

theory of covariance stationary processes provides a convenient frame-

work within which to study the nature and extent of autocorrelation,

the principal form of intertemporal dependence.

The autocWariance function

it aE(X XQ -E.

summarizes all information concerning the autocorrelation present in

[tX. The s etrum

g() (r) 1 R T o e 0 n
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provides the same information, and in the writers' opinion is the pre-

forred function to examine both for conceptual and statistical reascns

The autocovariance functiot R measures the covariance betreen the

ranvdom variables Xt and Xt+T. For the class of processes with which

we are concerned this function diminishes, though not nacessartly

monotonically as I-I iacreases. This property accords with reality,

whera te • influ*nce of the past wear- off as tine elapees, The spectrum

g permits us to study mean-square variation in a series of interrelated

events in terms of a continuum of frequency components. Since

sJ 9(k)dXa0
we way regard the variance % as being made up of infinitesimal contri-

butions gOX)dý in small[ bands d)L around each frequency. The spectrum g

may be considered a variance decomposition with each component being

associated with a sp>ecific frequency. Low frequencies correspond to0

long fluctuations in (X ; high frequencies correspond to rapid fluc-

tuations. If a peak occurs in a spectrum, the corresponding frequency

influences the appearance of jXt' to a :reater extent than the remaining
frequencies. A process with a peak at a non-zero frequency in fact dis-

plays something of a periodic appearance with its period corresponding

approximately to the frequency at which the peak appears.
When the subscript t denotes time and Xt is an observation at time

t, observations are collected at equal intervals on the time axis. Since

t is only an index, it need not necessarily refer to tims; any series of

events can generate a time series. For example, in the simple queueing

problem t may denote the tth job to receive service and Xt may be the

waiting time of this job. Here (X t] is a series of waiting times arranged

in the order in which their corresponding Jobs receive service.
Interactions between input and structure may often create unwanted

periodicities in the output. This possibility is not as remote as one

would like to think, for Slutzky [22] long ago showed that the linear

siumiation of purely random events can appear regularly periodic. Since
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peaks in a spectrum correspond to periodic components in [X} and

since the sharper a peak is, the more regular its periodicity is,

examining the sample spectrum permits an experimenter to determine

whether any periodicitiea exist and to estimate the extent of their

regularity.

Figure 6 shows dhe sample spectrum of queue length for a single-

server queueing model with exponentially distributed interarrival times

and constant service tine. The peak at 0-05 cycles per hour and its

harmonics suggest the presence of periodicity. This behavior can be

explained as follows. Whenever jobs are queueing, a periodic reduction

in queue length occurs every 20 hours. With a constant service time,

Jobs emerge from the service facility at a fixed periodic rate, creating

a periodic appearance. If this efflux is the input to another service

facility, then this input is periodic whenever jobs are queueing in the

first facility,

Two points motivate our concern about periodicities. First, their

presence may be contrary to our intentions. Second, since the output

of one substructure is usually the input to another, the effects of

periodicity may propagate themselves throughout the remaining substruc-

tur•s. It is a property of substructures that they exhibit the charac-

teristics of electromechanical systems and can have a natural or a

resenant frequency. If a substructure is excited by a frequency close

to its natural one, itu response at that frequency is considerably

exaggerated compared to thst of others. The strength of a periodic

component may therefore increase as it propagates through a system,

obscuring the behavior of remaining components.

Conclusions drawn from the output of such a system may then be

misleading. For example, one might suppose that the inputs to certain

model subsystems are random phenomena whereas they actually appear in

a model as regular or strongly periodic impulses. If this is so, rules

appropriate for controlling randomly varying inputs may be judged in-

appropriate. The performance of the rules will be judged in an environ-

ment different from that for which they were designed.

As mentioned earlier, economy of detail aids understanding and

saves computation time. The ease with which computer simulation lan-

guages permit one to describe complex behavior carries with it the
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danger of too much detail. Sinee a detailed atodel has more built-in

assumptions than a sImple •mdcl, iL generally requires a longer

learn~ing period for a prospective user. In adldition, simulatin8 these

details can consume vast a_-zunts of compu~er Lim.e. If several models

offer t!,e same response to a given Input, the simplest model is

advantageous. It is desirable to tegt several models to determine

the adequ~acy Of each and then choose the simple~t awong the acceptable

ones.

Suppose that a complex model behaves as required and we wish to

test the equivalence of a simpler model. If at all possihle, the

simpler model should be compared with, the true environment. When this

cannot be done, the responses of the simple and complex models should

be compared for a given input. The comparison tests the hypothesis

--

that certain population characteristics, for example, means,-variances

or spectra, are identical for both models.

Since intertemporal dependence is often an important characteristic

of models, and its mean-square variation is described by the spectrum,

one may compare mean-square intertemporal dependence by testing the
equivalence of spectra of two models. Jenkins 15h and Fishman ans

Kiviat [iO0 describe an appropriate testlng procedure.

While it is true that higher-order efiects may be dissimilar in

the tao models, a comparison of spectra can do much toward determlsnng

whoer the mher comparisons are usefuln , The test is simple. In

addition, when Lhe null hypothesis of no difference is rejected, the
comparison of spectra permits one to identify where in the structures

of the two models the departures o,-cur. With this knowledge, one may
perhaps modify the simple structure to more closely match the complex

one.

Verifyin6 a model's structure protects an experimenter against
creating anomalous responses, allows for a justifrably simple design,

and saves computer time. It is a natural imperative a o verify both

data and structure before a model is used in order to minimize compli-

cations that can arise In the course of an experiment. Failure to
verify has created more than one embarrassing situation in Interpreting

ou tpu t'

of mdel, an it men-sqarevaratio isdescibe bythe pecrum
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S IXV, VALIDATION

I DATA VALIDATION

Validating a model means establishing that it resemles its

actual systm reasonably well. If a model describes some hypothetical
system, Lhen no validation caa occur. Also, if no numerical data •

exist for an actual system, it is not possible to establish the quanti-
to r-a• gru e of a mdel wih realIt. The Ideas of re em sectisnt

therefore only apply when numerical data exist for some or all of an

actual system.

Sampling from a theoretical rather t'an an empirical distribution

* is generally considered preferable, since it exposes a simulated system

to the universe of possible stimuli rather than merely to those that
have occurred in the past. Often, graphical methods suffice to judge

the validity of theoretical distributions. If, for example, I.c aisume

that data have the exponential distribution, then we would expect the

cumulative empirical distribution to appear linear on semilogarithmic

paper. If the normal distribution is assumed, we would expect the

cumulative empirical distribution to appear linear on normal probability

paper. Graphic examination is easy and revealing. Whenever applicable,

it should be used.

The X test is often proposed for testing the appropriateness of

a chosen sampling distribution, but Cochran [2], among other writers,

has shown the inadequacy of this test when the sample size of the

empirical data is limited and the theoretical distribution is skewed.

As an alternative, Cochran suggests the variance test, which generally
2

has greater power than the X goodness-of-fit test and does away with

the need for class intervals.

As an example, we describe the variance test when the null hypo-

thesis is that a set of independent observations (x i - 1, 2, ... , N]

came from an exponential distribution with parameter X. Under this

hypothesis we have

2
E(x) - /, var(x ) 1 /k
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As our estimate of X we use them "imm likelihood astimaoor &

i 0.

The test statiatic is

i/s

2
which is approximately distributed as X with (N-I) degrees of freedom.

No class intervals are required in this test.
" nos2

The X and variance tests both assume independent observations,
San assumption that also simplifies Monte Carlo sampling. While its

convenience for testing is apparent, the credibility of this assumption

is seldom tested. If a sample record is "sufficiently long," one may

estimate its spectrum and compare it with the uniform spectrum for an

uncorrelated process.

For short records, spectrum comparisons are not possible. Here

we suggest using nonparametric tests of randomness which do not require

an investigator to make any assumptions about the underlying distribu-

tion of sample data. In addition, the appropriateness of the tests

do not depend on the sample being large. Walsh [25] lists a number of

nonparametric tests that can be applied to small samples.

The term "sufficiently long" has an irritating quality about it

ior simulation experimenters. Seldom is enough prior information

available to estimate how long to run an experiment. Nevertheless,

most writers on the statistical analysis of simulation experiments

take the length of the sample record as adequate for the analyses they

propose. in [9] a two-stage technique is described wherein one may

estimate how long an experiment is to be run. The procedure is inte-

grated into a test comparing means, but this should pose no problew

in determining run lengths alone.

Sn m m n m n mn m• ii
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STRUCTURE VALTDATION

Having tested assumptLons about the data, there remains the task

of validating the structure. If a model resembles reality fairly well,

we expect that its simulated response to a simulated, but valid, input

should exhibit behavior similar to that observed for the real system.

A spectrum analysis is again instructive. Testing the homogeneity of

spectra, one for the actual system's output and the other for the

simulated system's output, is easily accomplished as described in [(0)

and [15.

The spectrum comparison applies to testing the homogeneity of

the autocorrelacion structure. Comparing means is also desirable since

we would expect no difference if the simulation model adequately resem-

bles the true system. Since the output processes are generally auto-

correlated, a comparison of means requires more work and care than in

the case of independent observattions.

The procedures in [8] can easily be modified to compare the

means of the simulated and real systems. The variance of the sample

mean is shown to be proportional to the spectrum at zero frequency

and, hence, testing means and testing spectra show a number of comamon

features.

Validation, while desir..ble, is not always possible. Each

investigator has the soul-searching responsibility of deciding how

much importance to attach to his results. When no experience is

available for comparison, an investigator is well advised to proceed

in steps, first implementing results based on simple well-understood

models and then using the results of this implementation to design

more sophisticated models that yield stronger results. It is only

through gradual development that a simulation can make any claim to

approximate reality. Large scale models that are not amenable to

validation often lead to perplexing, if not misleading, resultz. This

occurs partly because the complexity of a system confuses a model-

builder and partly because of the tenuous nature of results based on

cascaded approximations. Despite its difficulty, effort must be

expended on model validation -- first, to give credeuce to result3
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within the validated range of model operations. and ,arond, to instill

confidence in extrapolations heyonl the range of model experience,

Verifyinkg and validating a model compd-se bouý a small share oi

the statistical problems in a simulation experiment, Once aun experi-

menter accomplishes them, he can begin to exercise his model to get

answers. His purpose is to collect data, reduce them, and make iafer-

ences about them, as efficiently as possible. We classify the statis-

tical problems he encounters under problem analysis. The way he solves

these problems strongly influences the quality of his results.

I

la
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V. POSLEM ANALYSIS

-ne purpose of system simulation experiments is to compare system
responses to different operating rules. In the simple queueing problem,

for example, we may wish to compare the mean queue lengths caused by
given arrival and service rates when different rules are used to assign

priorities to jo)bs. Another purpose it to determine functional rela-

tionships between input factors and system response. We may simply

wish to get a "feel" for the way in which input and outpuL relate, or

we "ay wish to use a determined functional relationship in a further

analysis. For example, we may determine a functional relationship

when all inputs are unrestricted and then use this relationship to

find the maximum response when constraints are placed on the inputs.

In some studies, both purposes enter. For simplicity, we treat them

separately.

Regardless of purpose, there are several statistical questions

common to all problem analyses and to structural verification and

validazion as well. One question relates to the choice of sampling

interval: What is the proper interval of simulated time between suc-

cessive observations of a process of interest? Another question is:
How can results be obtained efficiently with a given reliability?

This topic is often discussed under the heading of "variance reduction
techniques." Reliability estimation itself poses another statistical
problem in system simulation experiments that must be solved before

one can determine how long to run an experiment.

Other statistical questions are peculiar to particular kinds of

experiments. When comparing experiments, one requires statistical
testing procedures. When relating response to input, one asks where

it t" inVuQ rangcs it is b'rFt Lo measure respunse so tCz-t its func-

tional form can be most easily identified and its parameters most

reliably estimated.

Measurements made in a simulation experiment can be of two kinds.

One kind measures a system's response to all possible situations.

Here the relevant statistic is a time-integrated average. The
other measures a svstemt s response to a specific set of initial
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"conditions. Time-integrated averages appear to be the most conuon

measurement. The similation literature is principally concerned with

them, and the discussion here retains this emphasis. The reader

should not conclude from this that measurement of response to Initial

conditions is unimportant. In particular the lack of literature on

the subject should be taken as a comment on its speciali.zed nature,

not its worth. As the use of simulation increases, there will be more

concern for measurements of this kind and more will be written about

them. As indicated, the discussion from here on will be of experiments

performed with the first kind of measurements in mind. The remainder

of this section uses the terms "time-integrated average" and "sample

mean" interchangeably.

SAMFLIU INTERVAL

When t denotes time the meaning of a time-integrated average is

clear. When t is a more general ordering index, a time-integrated
average refers to the mean value of a quantitative characteristic

of a series of events indexed on t. The term time-integrated average
remains appropriate since the ordering of events is related to time.

If the index denotes time then the choice of sampling interval

is crucial if ye hope to extract useful information about the auto-

correlation structure of a process in an efficient way. For our pur-
poses a sampling interv&l should be small enough so that within it a

process changes little, if a, all. Process activity, not chronologi-

cal time, dictates the choice o, sampling interval. For each experi.
ment, other than replications, it is wise to check the adequacy of the

sampling interval, since too small an interval causes redundancy in

the data and too large an interval loses information. Biasing an in-

terval downward is more desirable than biasing it upward, since redun-

dent data are far less harmful than lost information.

When t denotes an event in an ordered series, the role of the
sampling interval is changed. Since we simply collect an observation

every time an event occurs, it would seem that we could avoid choosing

a sampling interval. It may occur, however, that successive event8 are

so highly correlated that collecting information on each event is highly



redundant. When this is the case a judictous choice of zaapling

interval reduces the nuaber of observations without eacrificing any

significant Lnformation.

VM&AWZA fE aUCTION a Tl"ES

It is nturally of interest to obtain experimental results with

specified rcliability at mntrAmum cost. tevelu-nt of variance reduc-

tion techniques was in fact the principal statistical activity in the

early days of computer simulation (Monte Carlo) experiments. The

importance of this activity continues to grow with the increasing

complexity of experiments and their concomitant consumption of computer

time.

Hammersley and landscomb [ii) discuss several variance reduction

techniques, among which the method of antithetic variates appears

easiest to apply. Page [203 shows its use in a simulated queueing

problem. Briefly, by generating C, a uniformly distributed random

number, in one replication of an experiment and generating I-C in a

second replication, the method induces negative correlation between

the responses obtained in both replications. The variance of the

average response of the two replications is consequently smaller than

it would be if the replications were independent. Antithetic variates

may also be used with more than two replications.

When the comparison of experiments is the purpose of a simulation

exercise, one may improve the efficiency of the data-gathering proce-

dure in another way. When testing the difference of two means, for

example, one may reduce the variance of the difference by choosing

the sample sizes as functions of the variances of the individual sample

means, the computer times required to collect one observation in each

experiment, and the degree of correlation between the sample means.

Inducing a positive correlation between the sample means reduces the

variance of their difference. This can be done, in som cases, by

using the same set of random numbers for both experiments.

As mentioned in See. IV, the choice of the number of observations

to collect in each experiment is a major influence in minimizing the

computer time needed to meet a specified level of accuracy. The
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two-stage procedure given In C9] offers a reasonxably straightforward
way of coming close to the most efficient sample sizes, When the sample

sizes are chosen close to the efficienL solution, a major saving in

computer time accrues.

EST•IMAT ING• REtlkBflIlTh

Since experimental results are random variables, it is important

that their reliability as estimates of poyiatioq paraveteras bc tat

explicitly. Failure to do so obscures the fact that some results may

be better than others. In addition, omitting reliability nwasures

makes it impossible to determine how much longer to run an experiment

in order to improve its reliability by some fixed a=ount.

Variance reduction techniques permit us to reduce the computer

time necessary to obtain a result with a given reliability. We must

also have a way of estimatiL•g the reliability of a result. This has

long been a major problem area in simulation experiments.

If a sampling interval is chosen so that observations are indepen-
dent, then the variance of a tLme-integrated average or sample mean

is simply the population variance divided by T, the number of observa-

tions. In general) since simulation data are autoco,.related, the

above approach requires finding a sampling interval such that succes-

sive observations are reasonably independent. Mechanic and McKay [18)
have investigated this approach.

If, however, one treats a simulated process as a covariance
stationary stochastic process (which it generally is), then the
variance of the sample mean is ig(O)iT where the function g is defined

in Sec. 11, and T is the length of the simulation run. A procedure

for estimating g(O) is given in [83, but unfortunately It cannot
easily be incorporated into the experimental run itself.

Another approach in to sum sample means from independent replica-
tions of the same experiment. The variance of this sum is, of course,
inversely proportional to the number of replications. Using antithetic
variates can reduce the variance even more by inducing negative corre-

lation between sample means.
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R CWEARISeN OFEXPLP-R L _M

In an experiment, responre is generally a large-sample, time-

integrated average that satisfies the conditions for asymptotic normal-
ity. This fact greatly simplifies testing the difference of two means

obtained under different operating rules, since the difference of the
sample means is also asymptotically normal. Let the subscripts I and I
2 denote experiments I and 2, respectively. Then for a given uignifi-

cance level a and tolerance 6, we have, under the null hypothesis

of no difference in the means,

prob (jR 1 - 6 2.

To test the null hypothesis, we require reasonably accurate estimates

of the variances of the sample means. These can be obtained by proce-

dures described in [9].

The comparison just described is the one most commonly applied in

the analysis of experimental results. Multiple comparisons and order-

ing procedures are desirable when more than two sets of operating rules

are being considered. Their appropriate statistical procedures are

found in texts on the analysis of variance, To our knowledge, no

study has yet appeared that makes a substantive contribution toward

adapting these procedures to the peculiar environment of computer

simulation experiments.

RESPONSE MEASURIEMNT

In comparing experiments, one is concerned with the response of

a system to different qualitative factors, such as operating rules,

Alternatively, one may examine the system's response under given oper-

ating rules to changes in quantitative factors, such as different input

activity levels. We refer to this analysis as response measurement.

Its purpose is to find a functional form relating the variable param-

eters of an input process to an observed output, and to estimate the

coefficients of the functional form.

I!I|
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Consider a simulation with one input x and one output y. For

each experiment, x assumes a fixed value that is known exactly, whereas

y assumes a value from a probability distribuLion whose parameters

are functions of x; y is a random variable. In a queueing problem x

might be the mean arrival rate and y the sample mean number of jobs

in quere, If, for astimation purposes, we use the linear least-squares

method, our functional relationship for the i observation is

Yi + i O i

Xi

Y" f(Yd)"

To derive the best linear unbiased estirttes of a and • with the linear

least-squares method, we require

E (c

E -0, L

var(Yi) - c for all i.

Some commonly used functional forms are listed below.

f(X) f(y)

1 x y

2 log x y

3 x log y

4 log x log y

{I

S I I I I I I I I II



For a correctly chosen form, the relationship between f(x) and f(y)

will appear linear. Linear, semilog, and log-log graph paper may be

used to find which rela•ionship is most appropriate. Other forms may

be examined, but for the moment we assume that one of the above torms

will hold. Hoerl [14] describes several techaiques for identifying

the functional form that linearizes the reLh ionship between x and y.

I.t is convenient to distinguish between two kinds of observations:

those collected to determine the appropriate functicnal form, and

those collected to estimate a and 6 with a given level of acciracy.

The first set iz a subset of the second.

To satisfy the above regression model, we require all yis to be

independent and have a common variance. Independence can be gained

by using different random number seeuences in successive simulation

runs with each set of input activity levels. For a given variance,

the proper length -f a simulated run may be estimated by the two-stage

procedure to which we have already alluded.

To find a functional form it is necessary to take observations

for a number of input activIty levels within the range of activity

levels being considered. As one would expect, the number of such

observations is inversely related to the variance of the observations.

The more reliable the obsetvations, the more confidence one can place

in having identified an appropriate functional form for a given number

of observations.

Once an appropriate functional form is found, one uses the obser-

vations already collected to estimate the coefficients. Additional

observations "y be collected and used to improve the reliability of

the estimates , The objective at this step is efficiency -- the

tonservation of computer time. If the computer times required to

collect all yi's with equal variance are the same, taking additional

Observations at the ends of the x range minimizes the computer time

necessary to improve the reliability of the estimated coefficients

by a given amount. In general, the computer times required to collect

observations with common variance do differ and, hence, the choice of

where to collect observations is not so simple. Litti., if anything,

has been published about this problem. lts solution will undoubtedly

improve the efficient performance of simulation experiments.
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It may occur that a priori theory suggests a model of the form,

N

'i-1

This model, unlike the one above, does not exclusively take observa-

tions at the end points of the independent variable range to minimize

the sample size needed for a given accuracy. The points at which

observations should be taken are given by the zeros of a polynomial

which is the integral ot one of the Legendre polynomiAls [13].

Response surface exploration, optimum seeking methods, and sequen-
tial experimentation are all topics germane to the analysis of computer

simulation experiments. Cochran and Cox [3] describe the principles

of response surface methodology, and Hill and Hunter [12] list a

number of papers covering different aspects of the topic. Draper and

Smith [6] describe procedures for applying a variety of linear regres-

sion analyses. Wilde [26) describes simple methods for finding

maxima end minima. Cochran and Coy also discuss sequential experimen-

tation. Although these methods contribute significantly to the

statistical analysis of experiments, they remain to be integrated into

a general procedure that takes due cognizance of the peculiarities

of computer simulation experiments.
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